Spectral Clustering with Spatial Coherence Property Jointing to Active Contour Model for Image Local Se Gmentation
نویسندگان
چکیده
Local Segmentation is the fundamental task for image processing. Consider to the problem of low segmentation precision and contour control instability for image local segmentation, a local segmentation theory is researched that based on SSCACM (spectral clustering with spatial coherence property jointing active contour model). First, by applying spatial coherence property constraint of image pixels to spectral clustering, an adaptive similarity function is constructed and the corresponding spectral clustering algorithm is used to extract initial contour of the local region of an image. Then, the NBACM (narrow band active contour model) is combined with the priori information of initial contour to evolve contour curve to get the segmentation result. At last, the local segmentation experiment is realized on synthetic images and medical images. The experimental results show that the method proposed can extract contour accurately and can improve the effectiveness and robust for image local segmentation.
منابع مشابه
ناحیهبندی مرز اندوکارد بطن چپ در تصاویر تشدید مغناطیسی قلبی با شدت روشنایی غیریکنواخت
The stochastic active contour scheme (STACS) is a well-known and frequently-used approach for segmentation of the endocardium boundary in cardiac magnetic resonance (CMR) images. However, it suffers significant difficulties with image inhomogeneity due to using a region-based term based on the global Gaussian probability density functions of the innerouter regions of the active ...
متن کاملHyperspectral Images Classification by Combination of Spatial Features Based on Local Surface Fitting and Spectral Features
Hyperspectral sensors are important tools in monitoring the phenomena of the Earth due to the acquisition of a large number of spectral bands. Hyperspectral image classification is one of the most important fields of hyperspectral data processing, and so far there have been many attempts to increase its accuracy. Spatial features are important due to their ability to increase classification acc...
متن کاملNonparametric Spectral-Spatial Anomaly Detection
Due to abundant spectral information contained in the hyperspectral images, they are suitable data for anomalous targets detection. The use of spatial features in addition to spectral ones can improve the anomaly detection performance. An anomaly detector, called nonparametric spectral-spatial detector (NSSD), is proposed in this work which utilizes the benefits of spatial features and local st...
متن کاملComputerized Lesion Segmentation on DCE-MRI using Active Contours and Spectral Embedding
Introduction: Accurate lesion segmentation is an important component of determining quantitative features for lesions on MRI. In this study, we develop an automated lesion segmentation method for delineating lesions on dynamic contrast enhanced (DCE)-MRI. We present a new active contour model which uses spectral embedding (SE), a process that partitions images in order to maximize intercluster ...
متن کاملHow Much Does Globalization Help Segmentation?
This paper quantifies the information gained in integrating local measurements using spectral graph partitioning. We employ a large dataset of manually segmented images in order to learn an optimal affinity function between nearby pairs of pixels. Region cues are computed as the similarity in brightness, color, and texture between image patches. Boundary cues are incorporated by looking for the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016